
Monodechlorination of 6,6-Dichloro-3-phosphabicyclo[3.1.0]hexane 3-Oxides by Catalytic Hydrogenation†

György Keglevich,*.ª Tibor Novák," Antal Tungler," László Hegedűs," Áron Szöllősy, Krisztina Ludányi^c and László Tőke"

^aDepartment of Organic Chemical Technology, Technical University of Budapest, 1521 Budapest, Hungary ^bDepartment of General and Analytical Chemistry, Technical University of Budapest, 1521 Budapest, Hungary ^cCentral Chemical Research Institute for Hungarian Academy of Sciences, 1525 Budapest, Hungary

Catalytic hydrogenation of the title compounds at *ca.* 88 °C and 9 bar in the presence of diethylamine led to a reasonable portion of monochlorocyclopropanes together with *ca.* 38% of hexahydrophosphinine oxides.

There are only a few reports on the reductive monodechlorination of geminal dichlorocyclopropanes in the literature.¹⁻⁴ We have recently found that the hydrogenation of dichlorophosphabicyclohexanes at *ca.* 88 °C and 9 bar in the presence of triethylamine afforded hexahydrophosphinines by reductive cyclopropane ring opening.⁵ Under the conditions applied, it was not possible to stop at the intermediate stages.

Scheme 1

Therefore we could not isolate and characterise the intermediates. Here we show how to perform the hydrogenations to yield a reasonable quantity of the monochloro species.

It was not possible to achieve monodechlorination by carrying out the hydrogenations of the title compounds (e.g. 1a) at lower temperatures than 85–90 °C,⁵ as no reaction occurred below 85 °C. Hydrogenation of 1a at ca. 88 °C in the presence of diethylamine instead of triethylamine afforded, however, the monochloro species 2a(1) and 2a(2) in reasonable quantities. According to ³¹P NMR, the proportion of 2a(1) and 2a(2) was 40%, with the remainder being the fully dehalogenated cyclopropane 3 (20%) and the hexahydrophosphinine oxide 6a (40%) (Scheme 1, Table 1). A similar hydrogenation of the isopropoxy starting material consisting of 36% of 1b and 64% of 1'b gave the monochloro products as a mixture of four isomers [2b(1), 2b(2), 2'b(1)] and 2'b(2)in 64% yield, together with 36% of **6b** (Scheme 1, Table 1). Our results are in accord with literature data showing that the outcome of the dehydrohalogenation may depend on the nature of the base employed.¹ Partial or complete separation of the isomers 2a and 2'b was achieved by repeated column chromatography: isomer 2a(1) was isolated in a pure form, 2'b as a 61-39% mixture of isomers 2'b(1) and 2'b(2).

The stereostructure of the starting material **1a** is known from an earlier X-ray study⁶ and the structures of the isomers of the isopropoxy compound (**1b** and **1'b**) were assigned on the basis of an analogy.⁷ As only the C-6 centre of the starting materials (**1** and **1'**) is involved in the hydrogenolysis, the relative configurations of the other asymmetric centres should remain unchanged. The distinction between isomer (**1**) and isomer (**2**) of **2** (and **2'**) is possible on the basis of the stereospecific ³J_{HH} couplings at C(6)—H. The X-ray structure⁶ of the starting material **1a** served as a good basis for the estimation of the torsion angles in the two isomers. Hence, the H—C(5)—C(6)—H dihedral angle is *ca*. 147° for isomer

Table 1 Products from the hydrogenation of the phosphabicyclohexanes

Starting compound	$\delta_{P}{}^{s}$ (product composition in %) ^b								
	2 (1)	2 (2)	2 ′(1)	2 ′(2)	3	Major	6	Minor	
1a	71.8 (26)	80.0 (14)			73.2 (20)	37.0 (35.1)⁵ (29)		34.6 (33.0)⁵ (11)	
1b+1′b	79.1° (15)	82.8 ^c (9)	80.6 (15)	88.2 (25)		51.0 (50.5)⁵ (28)		49.9 (49.1)⁵ (8)	

^aIn CDCI₃. ^bOn the basis of the ³¹P NMR intensities. ^cTentative assignments.

*To receive any correspondence (*e-mail:* keglevich@oct.bme.hu). †This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research (S)*, 1997, Issue 1]; there is therefore no corresponding material in *J. Chem. Research (M)*. (1) of **2** and **2'**, and *ca*. 0° for isomer (2) of the same products, suggesting ${}^{3}J_{\rm HH}$ couplings of 4.8 and 8.0 Hz, respectively.⁸ Isomer (1) and isomer (2) of the products (**2** and **2'**) were assigned on the basis of the measured couplings of *ca*. 3 and

J. Chem. Research (S), 1997, 290–291†

Table 2 Partial ¹H NMR data for the monochloro products

	$\delta_{H}{}^{a}$ (multiplicity, J in Hz)						
	2a (1)	2'b (1)	2'b (2)				
C(6)—H	2.68 (d, ³ J _{HH} = 2.9)	2.95 (d, ³ J _{HH} = 3.0)	3.25 (dd, ${}^{3}J_{HH} = 7.3$, ${}^{4}J_{PH} = 3.5^{b}$)				

^aIn CDCl₃. ^bConfirmed by ³¹P decoupled spectra.

Table 3 ¹³C NMR data for the monochlorophosphabicyclohexanes

	δ_{c}^{a} (J _{PC} in Hz)									
Compound	C-1	C-2	C-4	C-5	C-6	C(1)—Me	C-1′	C-2′	C-3′	C-4′
2a (1)	28.4 (7.3)	38.1 (66.8)	32.2 (66.7)	30.8 (5.6)	45.1 (3.8)	19.2 (7.4)	132.5 (88.3)	130.2 ^b (9.2)	129.0 [♭] (11.1)	132.2 (2.1)
2′b (1)	24.9 (11.4)	34.2 (89.2)	28.8 (88.7)	27.8 (8.7)	44.3 (4.0)	19.2 (9.7)	()	70.1 (6.5)	24.1 (3.7)	(
2 ′ b (2)	22.5 (12.1)	28.8 (88.7)	23.6 (89.0)	23.7 (8.6)	45.8 (6.3)	21.5 (10.6)		69.3 (6.5)	24.4 (3.6)	

^aIn CDCl₃. ^bMay be reversed.

7.3 Hz, respectively (Table 2). Isomers 2a(1), 2'b(1) and 2'b(2) were also characterised by ¹³C NMR (Table 3) and MS data.

Interruption of the hydrogenation of **1a** at an earlier stage resulted in a mixture containing 11% of **2a**(1), 7% of **2a**(2), 7% of **3**, 23% of **6a** and 6% of **1a** according to ³¹P NMR. The remaining part at δ_P 30.7 (37%) and at δ_P 28.5 (9%) consisted of intermediate isomers. The major component was separated by column chromatography and assigned structure **5a** by ¹³C NMR and MS. Thus, it was confirmed that the hydrogenation of **1** takes place through the tetrahydrophosphinine oxide **5**, formed from the dihydrophosphine oxide **4**.

Experimental

The same instruments were used as previously reported.⁵ The NMR spectra were recorded in CDCl₃ solution. Coupling constants (J) are given in Hz. The starting materials **1a** and **1b** were prepared as described earlier.^{9,10}

Hydrogenation of **1a**. 6-Chloro-1-methyl-3-phenyl-3-phosphabicyclo[3.1.0]hexane 3-Oxide **2a**(1) and 1-Methyl-3-phosphabicyclo[3.1.0]hexane 3-Oxide **3**.—A mixture of **1a** (1.5 g, 5.46 mmol), Pd–C (0.9 g, 10%) and diethylamine (1.4 ml, 13.7 mmol) in methanol (50 ml) was hydrogenated at 85–90 °C and 9 bar until 1.8 equiv. of hydrogen was absorbed. Filtration and evaporation left an oil that was analysed by ³¹P NMR and GCMS (Table 1). Column chromatography (silica gel, 3% methanol in chloroform) afforded 0.21 g (16%) of **2a**(1), 0.31 g (27%) of **6a** and a fraction of 0.2 g consisting of *ca*. 50% of **3**.

form) allorded 0.21 g (16%) of 2a(1), 0.51 g (27%) of **6a** and a fraction of 0.2 g consisting of *ca*. 50% of **3**. **2a**(1). δ_P 70.9; δ_H see Table 2 and 1.56 (s, 3 H, 1-Me), 1.65 (dd, ${}^{3}J_{\rm PH} = 21.9$, ${}^{3}J_{\rm H(4)\rm H} = 7.8$, 1 H, 5-H), 2.29–2.44 [m, 3 H, C(2)—H₂, C(4)—H₂], 2.63 [ddd, ${}^{3}J_{\rm HH} = 7.7$, ${}^{2}J_{\rm PH} = {}^{2}J_{\rm HH} = 18.3$, 1 H, C(4)—H₂], 7.49–7.69 (m, 5 H, Ar); δ_C see Table 3; *m*/*z* (rel. int.) 240 (*M*⁺, 5), 225 (2), 205 (100), 125 (15), 77 (12), 91 (9); HRMS, *M*⁺ (Found: 240.0499. C₁₂H₁₄OPCl requires 240.0471 for the ³⁵Cl isotope).

isotope). **3.** $\delta_{\rm P}$ 72.3; m/z 206 (M⁺) (Found: M^+ 206.0899. C₁₂H₁₅OP requires M_r 206.0861).

5-*Methyl*-1-*phenyl*-1,2,3,6-*tetrahydrophosphinine* 1-Oxide 5a.— Compound 5a was obtained by column chromatography (silica gel, 3% MeOH in CHCl₃) after interrupting the above hydrogenation. Yield: 21%. δ_P 30.5; δ_C 22.1 (J = 4.9, C-3), 23.8 (J = 67.4, C-6), 25.7 (J = 11.1, Me), 31.4 (J = 66.2, C-2), 122.5 (J = 12.6, C-4), 128.3 (J = 11.5, C-2'),* 129.5 (J = 9.3, C-3'),* 131.5 (C-4'), 132.5 (J = 96.6, C-1') (assignments marked * may be reversed); m/z (rel. int.) 206 (M^+ , 100), 191 (28), 125 (68), 91 (29), 77 (26). (Found: M⁺ 206.0895. C₁₂H₁₅OP requires M_r 206.0861).

Hydrogenation of **1b** and **1'b**. 6-Chloro-1-methyl-3-isopropoxy-3-phosphabicyclo[3.1.0]hexane 3-Oxides **2b**'(1) and **2'b**(2).—The mixture of isomers (**1b** and **1'b**) was hydrogenated in isopropyl alcohol as described above for **1a**. Column chromatography of the mixture (Table 1) led to 0.25 g (21%) of **2'b** consisting of 61% or **2'b**(1) and 39% of **2'b**(2) and 0.30 g (30%) of **6b**. For **2'b**(1): $\delta_{\rm P}$ 80.9. For **2'b**(2): $\delta_{\rm P}$ 88.4. For the mixture: $\delta_{\rm H}$, Table 2; $\delta_{\rm C}$, Table 3; CI–MS, *m/z* 223 (M+H); *m/z* (rel. int.) 222 (M⁺, 1), 207 (5), 187 (25), 180 (18), 145 (100).

OTKA support of this work is acknowledged (grant. no.: T 014917).

Received, 26th November 1996; Accepted, 29th April 1997 Paper E/6/08000F

References

- 1 P. Rylander, in *Catalytic Hydrogenation in Organic Synthesis*, Academic Press, New York, 1979, pp. 235–236.
- 2 A. R. Pinder, Synthesis, 1980, 425.
- 3 K. Isogai and T. Kazama, J. Chem. Soc. Jpn., 1967, 88, 106 (Chem. Abstr., 1967, 67, 43 125).
- 4 K. Isogai, S. Kondo, K. Katsura, S. Sato, N. Yoshihara, Y. Kawamura and T. Kazama, J. Chem. Soc. Jpn., 1970, 91, 561 (Chem. Abstr., 1971, 74, 3186d).
- 5 Gy. Keglevich, A. Tungler, T. Novák and L. Tőke, *J. Chem. Res.* (*S*), 1996, 528.
- Gy. Keglevich, F. Janke, V. Fülöp, A. Kálmán, G. Tóth and L. Tőke, *Phosphorus Sulfur Relat. Elem.*, 1990, **54**, 73.
 Gy. Keglevich, A. Kovács, L. Tőke, K. Újszászy, Gy. Argay, M.
- Gy. Keglevich, A. Kovács, L. Tőke, K. Ujszászy, Gy. Argay, M. Czugler and A. Kálmán, *Heteratom. Chem.*, 1993, 4, 329.
 E. Pretsch, J. Steibl, W. Simon and T. Clerc, *Tables of Spectral*
- 8 E. Pretsch, J. Steibl, W. Simon and T. Clerc, *Tables of Spectral Data for Structure Determination of Organic Compounds*, Springer-Verlag, Berlin, H25, 1981.
- 9 Gy. Keglevich, I. Petneházy, P. Miklós, A. Almásy, G. Tóth, T. Tőke and L. D. Quin, J. Org. Chem., 1987, 52, 3983.
- 10 Gy. Keglevich, J. Brlik, F. Janke and L. Tőke, *Heteroatom. Chem.*, 1990, **1**, 419.